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Abstract

Sex differences in the brain have received a wide interest in neuroscientific research. Instead 

of task-based group comparisons, the present study employed a machine-learning (ML)-

approach to examine whether the resting-state functional connectivity of 12 meta-analytically 

defined networks carries enough information to accurately predict the sex of a person. It was 

hypothesized that especially emotion-related networks should classify well. Sex classification 

analyses were conducted in the datasets of the healthy brain network (HBN, n = 218) the 

Rockland Sample of the enhanced Nathan Kline Institute (eNKI, n = 574), the Human 

Connectome Project (HCP, n = 734) and the 1000BRAINS-dataset (n = 995). The ML-

algorithms LASSO, LSVM, Ridge and RVM were used for this classification approach. The 

results showed that the eNKI- and HCP-datasets as well as the algorithms LASSO and Ridge 

received on average higher classification accuracies than the other datasets and algorithms. 

The networks of autobiographical and semantic memory reached the highest accuracies of all 

networks. Taken together, the results did not support the initial hypothesis. Instead, the 

results generally displayed a strong dependency on the datasets and ML-algorithms. 
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Sex classification from resting-state functional brain networks

Sex differences in the brain have received a wide interest in psychology and neurosciences 

and many studies already supported the existence of structural and functional differences 

between men and women (Zaidi, 2010). There was evidence for sex differences in total brain 

size (Nopoulos, P., Flaum, M., O’Leary, D., & Andreasen, N. C., 2000; Ruigrok et al., 2014), 

but also in several cortical and subcortical regions (Ruigrok et al., 2014) and also in the ratio 

of gray and white matter (Sacher et al. 2013; Filkowski et al. 2017; Zaidi 2010). Moreover, 

sex differences were also evident in lateralization: Women showed more bilateral 

functioning, whereas men showed stronger lateralization in the domain of language (Baxter et 

al., 2003) and face processing (Proverbio, Brignone, Matarazzo, Del Zotto, & Zani, 2006). 

This phenomenon went along with greater interhemispheric connectivity in women and 

greater intrahemispheric connectivity in men in structural (Ingalhalikar et al., 2014) as well as 

in functional connectivity (Satterthwaite et al., 2015). 

 Sex differences were also found in different cognitive domains such as language 

(Baxter et al., 2003; Burman, Bitan, & Booth, 2008; Weiss, E. M., Kemmler, G., 

Deisenhammer, E. A., Fleischhacker, W. W., & Delazer, M., 2003) or visual-spatial attention 

(León, Tascón, & Cimadevilla, 2016; Vaquero, E., Cardoso, M. J., Vazque, M., & Gomez, C. 

M., 2004), which could be partially attributed to sex-specific functional connectivity in the 

brain (Kansaku, K., & Kitazawa, S., 2001). Another cognitive domain in which sex 

differences were found is the processing of emotions: Several studies demonstrated evidence 

for emotion-related sex differences; for example in form of the recruitment of key regions 

associated with the processing of emotional materials (Hofer et al., 2006; Stevens & Hamann, 

2012), but also in behavior (Whittle, Yücel, Yap, & Allen, 2011).  
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 However, for some other cognitive domains the literature provided not an entirely 

clear picture regarding sex differences: Especially for working memory, defined as the ability 

to maintain and manipulate information for a limited period of time (Rottschy et al., 2012; 

Speck, O., Ernst, T., Braun, J., Koch, C., Miller, E., & Chang, L., 2000), the literature 

provided partly contradicting results regarding sex differences: Whereas Lynn and Irwing 

(2002) found behavioral sex differences, other studies could not support this assumption 

(Solianik, Brazaitis, & Skurvydas, 2016; Teleb, A. A., & Al Awamleh, A. A., 2012). In turn, 

other studies found sex differences in the functional organization and activation for  working 

memory (Hill, Laird, & Robinson, 2014; Speck, O., Ernst, T., Braun, J., Koch, C., Miller, E., 

& Chang, L., 2000).  

 For the domain of attention, the literature is also not entirely clear: For vigilant or 

sustained attention, which is defined as focussing one´s attention to certain stimuli or simple 

tasks for a certain period of time (Langner & Eickhoff, 2013; Prinzel & Freeman, 1997), 

some studies could not found any sex differences (Levy & Hobbes, 1979), whereas other 

studies stated that sex differences in vigilance performance are evident, but task-specific 

(Dittmar, M. L., Warm, J. S., Dember, W. N., & Ricks, D. F., 1993; Lin, C. C., Hsiao, C. K., 

& Chen, W. J., 1999; Prinzel & Freeman, 1997). 

 Furthermore, also for high-level control processes, the studies did not form an 

uniform picture, as for example for cognitive action control: Cognitive action control 

describes an attentional system which mediates goal-oriented behavior by maintaining goal-

relevant behavior, which is essential in everyday life (Cieslik, Mueller, Eickhoff, Langner, & 

Eickhoff, 2015; Mansouri, Fehring, Gaillard, Jaberzadeh, & Parkington, 2016). It could be 

found that males and females differ in their neural recruitment for cognitive control, but a 

main effect of  sex could not be proven (Liu, Hairston, Schrier, & Fan, 2011; Mansouri et al., 

2016). 
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 Altogether, it could be stated that for several cognitive domains, the literature either 

provided evidence for or against sex differences. These inconsistencies underline the need for 

further research in the field of sex differences in cognitive domains, which should be also 

extended to sex differences in functional connectivity (Sacher, Neumann, Okon-Singer, 

Gotowiec, & Villringer, 2013). 

 One possible explanation for these inconsistencies could be the phenomenon of the 

publication bias. This phenomenon means that many studies on a certain topic have been 

conducted, but were not published because of insignificant findings. Another possible 

explanation for these ambiguous findings in some cognitive domains could be that these 

studies were often task-based group comparisons between men and women, often conducted 

with a small number of participants. To avoid this problem, we chose a different approach to 

investigate sex differences: The present study employed a machine-learning (ML)-approach 

that learns sex-specific characteristics in order to predict the sex of a person on the basis of 

these characteristics.  

 With this approach we wanted to meet the demand of further research regarding sex 

differences in cognitive domains by investigating the underlying functional connectivity of 

different cognitive domains. For this purpose we examined the resting-state (RS) functional 

connectivity in meta-analytically defined networks. These nodes of the networks were 

defined by which brain regions showed common activation for a certain cognitive domain in 

different task-based studies. The RS functional connectivity refers to the temporal correlation 

of spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal in fMRI 

while the subjects rest in the scanner and should not think of anything in particular (Greicius, 

Supekar, Menon, & Dougherty, 2009). To cover a broad set of cognitive domains, we 

analyzed networks based on some cognitive domains mentioned before and also some more, 

in particular the networks which were already examined together in a study by Pläschke et al. 
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(2017): vigilant attention (VigAtt), theory-of-mind cognition (ToM), reward-related decision 

making (Rew), motor execution (Motor), mirror neuron system (MNS), cognitive emotion 

regulation (ER), empathic processing (Empathy), emotional scene and face processing 

(emoSF), cognitive action control (CogAC), as well as the autobiographical memory (AM), 

semantic memory (SM) and working memory (WM), further information are provided in 

table 1. 

 Taken together, we wanted to investigate the functional connectivity in RS for all the 

12 networks; with the ML-approach we examined whether the functional connectivity carried 

enough sex-specific information to accurately predict the sex of a participant. In doing so, we 

could finally point out the cognitive domains, whose underlying functional connectivity 

carried enough information to distinguish well between men and women. 

 Overall, some of the 12 networks are directly or indirectly related to emotions, such as 

the network of cognitive emotion regulation. This network is based on studies conducted to 

cognitive reappraisal, which means an emotion regulation strategy defined as thinking 

differently about a stimulus than before in order to change its affective impact (Buhle et al., 

2014; McRae, Ochsner, Mauss, Gabrieli, & Gross, 2008). The literature provided some 

contradicting results proposing men to be more successful in this task because they show 

either higher activity in cognitive areas dealing with emotion regulation strategies (Filkowski, 

Olsen, Duda, Wanger, & Sabatinelli, 2017), or men showed lower activation in these regions 

which was also interpreted as more efficient (McRae et al., 2008). This contrast was 

discussed in a review by Whittle et al. (2011) who proposed a theory of different strategies to 

succeed in this task: Females were proposed to recruit neural regions associated with 

emotional processing to transform negative affect into positive affect (McRae et al., 2008) 

and men recruited more regions related to cognitive processing to regulate emotions. 

Altogether, the results of the studies did not agree as to whether men or women are more 
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efficient in regulating their emotions, but there was an agreement in sex-specific strategies to 

deal with this problem. 

 Sex differences in the recruitment of neural regions were also reported for the 

emotional processing of faces and scenes: In addition to the fact that sex-specific neuronal 

responses to emotional stimuli could be already pointed out (Hofer et al., 2006), there were 

also sex-related differences in face processing: There was female superiority in face 

processing reported by Batty and Taylor (2006) as well as by Sommer, Hildebrandt, Kunina-

Habenicht, Schacht, and Wilhelm (2013). But also in the neural correlates the literature 

portrayed a uniform picture of a right-hemispheric lateralization for face processing 

(Kanwisher, McDermott, & Chun, 1997; McCarthy, Puce, Gore, & Allison, 1997; Sergent, J., 

Ohta, S., & MACDONALD, B., 1992) which was assumed to be more present in men 

because women showed a more bilateral functioning (Bourne, 2005; Bourne & Maxwell, 

2010; Godard & Fiori, 2010; Proverbio et al., 2006).  

A cognitive ability that is more concerned with the understanding of emotions is 

called theory of mind. It describes the understanding of other people’s feelings, thoughts and 

mental states and that these can differ from one´s own (Premack, D., & Woodruff, G., 1978). 

This knowledge enables people to explain and predict the behavior of other people, which is 

an important component in social interactions (Gallagher & Frith, 2003). Multiple studies 

were conducted in this field and the literature provided an uniform picture of sex differences 

in form of a female advantage in behavioral measures (Bosacki, 2000; Calero, Salles, 

Semelman, & Sigman, 2013; Charman, Ruffman, & Clements, 2002; Walker, 2005), but 

most of the studies were conducted with children and not with adults.  
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Table 1 

Respective publication of the meta-analysis for each network 

network abbreviation publication 

autobiographical memory 

 

AM 

 

Spreng, R. N., Mar, R. 

A., & Kim, A. S. (2009) 

cognitive action control CogAC 

 

Cieslik et al. (2015) 

emotional scene and face processing emoSF 

 

Sabatinelli et al. (2011) 

empathic processing Empathy 

 

Bzdok et al. (2012) 

cognitive emotion regulation ER 

 

Buhle et al. (2014) 

 

mirror neuron system MNS 

 

Caspers, Zilles, Laird, 

and Eickhoff (2010) 

motor execution Motor 

 

Witt, Laird, and 

Meyerand (2008) 

reward-related decision making Rew 

 

Liu et al. (2011) 

semantic memory SM 

 

Binder, Desai, Graves, 

and Conant (2009) 

theory-of-mind cognition ToM 

 

Bzdok et al. (2012) 

vigilant attention 

 

 

VigAtt 

 

 

Langner and Eickhoff 

(2013)  

working memory WM 

 

Rottschy et al. (2012) 

 

Closely related to theory of mind is the mirror neuron system because it serves action 

understanding by simultaneous activation for the execution or imitation of actions and action 

observation (Cheng et al., 2009; Cheng, Y., Decety, J., Lin, C. P., Hsieh, J. C., Hung, D., & 

Tzeng, O. J, 2007; Rizzolatti & Craighero, 2004). Also for this network the literature showed 

an uniform picture with women having larger volumes in the brain areas related to the mirror 
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neuron system, higher spinal excitability or stronger activation in task-based studies (Cheng 

et al., 2009; Cheng, Y. W., Tzeng, O. J., Decety, J., Imada, T., & Hsieh, J. C, 2006; Cheng, 

Y., Decety, J., Lin, C. P., Hsieh, J. C., Hung, D., & Tzeng, O. J, 2007; Cheng, Y., Lee, P. L., 

Yang, C. Y., Lin, C. P., Hung, D., & Decety, J., 2008).  

The theory of mind and mirror neuron system are in turn essential components for 

empathic processing, which describes the ability to share the feelings of others and is 

therefore very important for social interactions (Bernhardt & Singer, 2012; Schulte-Rüther, 

Markowitsch, Fink, & Piefke, 2007). Behavioral sex differences were found in form of  

women reporting higher empathy than men (Pohl, Bender, & Lachmann, 2005), but it was 

also stated that these behavioral differences are not reflected in the neural data (Michalska, 

Kinzler, & Decety, 2013). Nevertheless, other studies provided evidence for sex-specific 

recruitment of areas related to empathy: Apart from a common network for empathy shared 

by both sexes, men were found to recruit more areas related to cognitive evaluation and 

mentalizing, whereas women recruited more emotion-related areas (Derntl et al., 2010). 

Schulte-Rüther, Markowitsch, Shah, Fink, and Piefke (2008) supported this assumption and 

stated that women use areas related to the human mirror neuron system to access the feelings 

of others. So, sex differences in empathy could be related to sex-related differences in the 

mirror neuron system (Cheng, Y., Lee, P. L., Yang, C. Y., Lin, C. P., Hung, D., & Decety, J., 

2008). 

Another domain indirectly associated with emotions is autobiographical memory, 

which is defined as the episodic memory for personal events from one´s own life (Spreng, R. 

N., Mar, R. A., & Kim, A. S., 2009; Young, Bellgowan, Bodurka, & Drevets, 2013). Piefke 

and Fink (2005) reported sex-specific differential neural activation while recollecting 

autobiographical memories supporting the hypothesis of distinct cognitive memory styles. 

Differences in the neural recruitment for autobiographical memories were also found by 
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Young et al. (2013). Some other studies reported behavioral differences in form of women 

reporting autobiographical memories in a more detailed, social- and emotion-related way 

(Buckner & Fivush, 1998; Grysman & Hudson, 2013) or women reported longer, richer and 

evaluative autobiographical narratives (Schulkind, Schoppel, & Scheiderer, 2012).  

Another domain of memory, which also describes knowledge that is acquired through 

one's own experience, is semantic memory. In contrast to autobiographical memory, this 

domain does not describe personal events, but rather knowledge about people, objects, 

relations, objects and culture acquired through own experience (Binder et al., 2009). The 

regions related to semantic memory are found to deal with highly processed multimodal and 

supramodal input, so they serve high-level integrative processes (Binder et al., 2009). A few 

studies investigated sex differences in semantic memory with tests about general knowledge 

in different fields which resulted in male or female superiority in different sub-categories 

(Lynn & Irwing, 2002; Tran, Hofer, & Voracek, 2014). But the results could not provide an 

entirely clear picture to sex differences in semantic memory. 

Just like for semantic memory, the literature to sex differences in reward-related 

decision making was relatively sparse: Sex differences were found in the recruitment of 

different neural regions to form the reward-related neural function, but this was partially only 

evident under certain conditions like stressful conditions and not in general (Dreher et al., 

2007; Lighthall et al., 2012).  

Much more information were available for the motor domain regarding sex 

differences: Several studies reported that men performed better than women in several motor 

tasks (Davies & Rose, 2000; Dorfberger, Adi-Japha, & Karni, 2009; Jiménez-Jiménez et al., 

2011) and Junaid and Fellowes (2006) proposed that males and females perform differently 

well in different sub-categories of motor tasks. These behavioral differences could also be 
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related to a neural basis: Amunts, Jäncke, Mohlberg, Steinmetz, and Zilles (2000) provided 

evidence for sex-dependent differences in the organization of the motor cortex. However, 

also all these results together did not result in a uniform picture regarding sex differences in 

the domain of motor execution. 

In the present study we wanted to find out whether these sex differences from task-

based studies could be connected to the underlying functional connectivity in the respective 

neural networks. It could be assumed that in the cognitive domain in which many sex 

differences could be already found, there might be also sex differences in the underlying 

functional connectivity within the respective neuronal network. The ML-algorithm should 

then be able to learn well from this set of sex differences in a network and make an accurate 

prediction of the sex of a person. This ML-approach for sex classification is relatively new 

and currently very little literature employing similar approaches exists. One of the few studies 

that used a ML-approach for sex classification was the study by Zhang, Dougherty, Baum, 

White, and Michael (2018): They employed predefined functional templates of different 

network and found that the features that contributed the most to the prediction were in the 

default-mode network, fronto-parietal and sensorimotor network. So, in their study sex could 

be reliably predicted using rfMRI data with an accuracy up to 87%. 

Because of the fact, that this approach was not conducted very often, it is not clear 

which ML-algorithm is the best to use for the question of classification. There are many ML-

algorithms which differ by different features. For example, there are some approaches that 

classify by a linear separation of classes, while others take a non-linear approach (Müller, 

Anderson, & Birch, 2003). Again other approaches create a sparse model, which means that 

in these models only a few variables are considered that are not set to zero (James, G., 

Witten, D., Hastie, T., & Tibshirani, R, 2013; Tipping, 2001). On the other hand, other 

approaches create models that consider all possible variables and are therefore non-sparse. In 
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statistics, it is well known that there is not one single algorithm that is the best for a specific 

question. This phenomenon is known as ‘no free lunch theorem’ (James, G., Witten, D., 

Hastie, T., & Tibshirani, R, 2013; Wolpert, D. H., & Macready, W. G., 1997). Thus, an 

algorithm may be suitable for a certain question and dataset, while for a different kind of 

question and data another algorithm works better. For this reason, we applied in this study 

four different ML-algorithms exploratively to four big different datasets to see if the 

classification results for the networks are independent of the dataset and the ML-algorithm. 

According to the literature regarding the cognitive domains and the assumption that 

task-based sex differences could manifest themselves also in the underlying functional 

connectivity, we stated the following hypotheses for the 12 networks that are related to the 

cognitive domains: For the networks of theory of mind, mirror neuron system and empathy, 

we hypothesized that the ML-algorithms should classify well between men and women 

because of the big amount of studies that already provided evidence sex differences in these 

domains. We also expected a good classification accuracy for the network of emotional scene 

and face processing which could result from the reported sex differences in the lateralization 

of face processing. Same is true for the networks of cognitive emotion regulation and 

autobiographical memory. Here we expected that the sex-specific processing styles should 

also lead in the RS functional connectivity to a good distinction between the sexes. Due to the 

large amount of sex differences that could be found in the literature in motor tasks, we also 

hypothesized a high classification accuracy for the network of motor execution. For the 

cognitive domains of working memory, vigilant attention, semantic memory, reward-related 

decision making and cognitive action control the literature either provided not a clear picture 

regarding sex differences or was relatively sparse. For this reason, we did not directly expect 

a high classification accuracy in these respective neural networks. 



Sex classification from brain networks 

13 

 

To sum it up, we expected higher classification accuracies especially in the networks 

that are related to emotions, because the processing of emotions is known to be different 

between men and women (Sacher et al., 2013). Nevertheless it must also kept in mind that 

this ML-approach is different to most of the studies reported before performing group 

comparisons, wherefore it could also lead to different results than the studies before. 

 

Methods

Datasets 

The four datasets, which were analyzed for this investigation, are presented in the 

following: 

Healthy Brain Network (HBN). The HBN has been initiated by the Child Mind 

Institute. It is an open resource for transdiagnostic research and contains information about 

different types of phenotypes as well as, among others, RS fMRI (Alexander et al., 2017). 

The authors reported that the participants for HBN were measured in a Siemens 3 Tesla (T) 

Tim Trio MRI scanner with a CMRR simultaneous multi-slice echo planar imaging sequence 

in the Brain Imaging Center of the Rutgers University with the following parameters: 60 

slices, resolution of 2.4 x 2.4 x 2.4 mm
3
, Field of View (FoV) = 64 x 2.4 mm

2
, Repetition 

Time (TR) = 800 ms, Echo time (TE) = 30.00 ms and flip angle = 31°. The subjects of the 

HBN-dataset included in this study were a total of 218, of whom 109 are men. The age of 

these subjects ranged from 5.04 to 19.50 (M = 10.52, SD = 3.46). 

Enhanced Nathan Kline Institute-Rockland Sample (eNKI). The eNKI is a deeply 

phenotyped large-scale dataset containing subjects with ages from childhood to late 

adulthood (Nooner et al., 2012). For this study we used the RS fMRI data of the eNKI 

acquired with the Siemens Magnetom Trio Tim sygno which had the following parameters: 
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38 slices, resolution = 3.0 x 3.0 x 3.0 mm
3
, FoV = 256 x 200 mm

2
, Multi-slice mode = 

interleaved; TR = 2500 ms, TE = 30 ms, flip angle = 80°. The present study contains 574 

subjects (212 males) of the eNKI, aging from 6.00 to 85.00 (M = 40.23, SD = 21.70). 

Human Connectome Project (HCP). The dataset of the HCP contains a large cohort 

of healthy adults and is freely available to use in the neuroimaging community (Smith et al., 

2013; van Essen et al., 2012). The HCP contains RS fMRI data, acquired with a Siemens 

Skyra 3 T MRI scanner with multiband accelerated echo-planar imaging. Further parameters 

were: 72 slices, resolution = 2 x 2 x 2 mm
3
 and FoV = 208 x 180 mm

2
, TR = 720ms , TE = 

33.1 ms and flip angle = 52° (Glasser et al., 2013; Smith et al., 2013). We included 734 

subjects (366 males) of the HCP-dataset in this study, with their age ranges from 22.00 to 

37.00 (M = 28.55, SD = 3.46). 

1000BRAINS. The 1000BRAINS study by Caspers et al. (2014) investigated the 

variability in the human brain during aging in a population-based German cohort. These 

subjects were measured in a Siemens Tim-TRIO 3 T MR scanner using gradient-echo 

echoplanar imaging (EPI). The corresponding parameters were the following: 36 slices, 

resolution = 3.1 x 3.1 x 3.1 mm
3
, FoV = 200 x 200 mm

2
, TR = 2.2s and TE = 30 ms, flip 

angle = 90°. We included 995 subjects (547 males) of the 1000BRAINS-dataset in this study, 

whose age ranges from 18.50 to 88.20 (M = 63.44, SD = 12.41). 

A re-analysis of the anonymized data of these samples was approved by the Ethics 

Commission of the Medical Faculty of the Heinrich-Heine-University Düsseldorf (study 

numbers: 2018-317-RetroDEuA and 5193). 
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Preprocessing 

HBN & eNKI. First of all, the data of the two datasets were realigned and unwarped 

by using the Phase map created with the SPM12 Fieldmap Toolbox v2.1 

(https://www.fil.ion.ucl.ac.uk/spm/toolbox/fieldmap/). The step of estimation contained the 

following parameters: quality of 0.95, separation of 3, register to the mean and an 

interpolation of the 7
th

 Degree of B-Spline. Unwarping reslice was also performed with the 

interpolation with the 7
th

 Degree of B-Spline. In the following step of intersubject registration 

(normalization) the mean EPI was co-registered to the gray matter probability map in the Old 

Segmentation toolbox in SPM (SPM12 v6685, Wellcome Centre for Human Neuroimaging, 

2018) by using the normalized mutual information with the EPI time-series kept aligned. The 

mean EPI was normalized to the template space in SPM MNI 152 (Holmes, C. J., Hoge, R., 

Collins, L., Woods, R., Toga, A. W., & Evans, A. C., 1998) using the classic Unified 

Segmentation approach in the Old Segment function in SPM. In order to mitigate overfitting 

(Overfitting: The model has adapted to too many parameters and noise of the training data, 

some of which are not relevant for the general prediction of unknown data (James, G., 

Witten, D., Hastie, T., & Tibshirani, R, 2013)) the warp frequency cutoff  was set to 45 to 

limit the discrete cosine transform (DCT) bases and the sampling distance was set to 2. The 

resulting deformation field was then applied to the EPI time-series and the mean EPI. In the 

last step of spatial smoothing, the preprocessed data of each dataset passed through a 5 mm 

smoothing with a fixed kernel in the MNI152 space.  

HCP. As described in the paper of Smith et al. (2013), the data of the HCP are 

available in raw and preprocessed form. For this study, the preprocessed data were chosen 

which have the following corrections: In the spatial preprocessing, the data were corrected for 

spatial distortions, head motions, B0 distortion and the data is registered to the T1-weighted 

structural image. Linking the previous corrections with the nonlinear warp field, results in a 
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single warp per timepoint. By applying this single warp to the original time series provides 

single resampling in the 2 mm MNI space. Furthermore, global intensity normalization was 

applied and voxels, which don´t belong to the brain, are masked out. Noisy voxels were 

excluded and the data were regularized with 2 mm Full width at half maximum (FWHM) 

surface smoothing (Smith et al., 2013, further details in Glasser et al., 2013). Further steps of 

the temporal preprocessing were for one thing a weak highpass temporal filtering (> 2000s 

FWHM) and for another thing an Independent Component Analysis (ICA) by using the 

Multivariate Exploratory Linear Optimized Decomposition into Independent Components 

method (MELODIC)  provided by the FSL toolbox 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC). “MELODIC estimates how many 

components the given quality and quantity of data will support being separated from each 

other” (Smith et al., 2013, p. 157). These components were classified by FMRIB´s ICA-based 

X-noisifier (FIX,  Salimi-Khorshidi et al., 2014) and artificial components as well as motion-

related timecourses are removed from the data.  

1000BRAINS. The RS fMRI data of the 1000BRAINS-dataset were cleaned from 

noise also by the MELODIC method provided by the FSL toolbox. These denoised data were 

further pre-processed with SPM12 using Matlab R2014a (Mathworks, Natick, MA). The first 

four EPI volumes were discarded for each participant. The remaining EPI images were then 

corrected for head movement by affine registration in a two-step procedure: First of all, the 

images were aligned to the first image. In the second step, the images were aligned to the 

mean of all volumes. Then, the resulting mean EPI image was spatially normalized to the 

MNI152 template using the “unified segmentation” approach to take into account inter-

individual differences in the brain morphology (Ashburner & Friston, 2005).  
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Analysis 

Networks. In this study we analyzed the RS functional connectivity in the 12 

following task-based networks: autobiographical memory, cognitive action control, emotional 

scene and face processing, empathic processing, cognitive emotion regulation, mirror neuron 

system, motor execution, reward-related decision making, semantic memory, theory-of-mind 

cognition, vigilant attention and working memory. The respective networks were defined in 

individual meta-analyses and examined together in a study by (Pläschke et al., 2017). For 

each network, brain regions and their corresponding coordinates were defined in individual 

meta-analyses, as provided in table 1. In this study, the activation in RS in the whole brain 

was measured. It was extracted for the previously defined regions of each network and 

summarized as a time course. These time courses of the activations were correlated with each 

other resulting in a matrix of correlation values for all of the defined regions of a functional 

network, what is called the connectome. This procedure was repeated over all of the 

participants, so that we got a connectome for each participant as input for the further ML-

analyses. 

In the ML-part of the analysis, the data was split up in 90% as training data and 10% 

to test the predictions at unknown data. So, a ML-classifier was trained to learn the 

relationship between the connectivity patterns of the received correlation-matrices of 90% of 

the participants and their respective sex. For the remaining 10%, the classifier should predict 

the sex of a person according their connectivity pattern.  

This procedure is repeated for 10 times, whereby the sample is always divided up 

differently into training and test data, which is called 10-fold cross validation (Hawkins, 

Basak, & Mills, 2003). For each new division, stratified sampling was applied, which means 

that the samples have the same sex ratio as it is in the whole dataset  (Neyman, 1934). This 
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process was in turn repeated 100 times for each individual analysis. The mean value of the 

100 iterations was then calculated for the results. This value describes the mean classification 

accuracy for each analysis, which is the accuracy of the prediction, the classifier reached for 

the unknown 10% of the data. This information was used to determine how much sex-

specific information to differentiate between the sexes was available in each of the 12 

functional networks. In order to take into account imbalanced sex ratios, as it was the case in 

the eNKI, HCP and 1000BRAINS-datasets, the comparison between the predicted and actual 

sex was calculated separately for men and women and these values were than averaged, so 

that the overall chance level for each data set was 50%. 

In order to ensure that the results were not only based on a specific ML-method, but 

were independent of it, we applied four different ML-algorithms in this study, which are 

presented below. 

ML-algorithms 

Least Absolute Shrinkage and Selection Operator (LASSO). This supervised ML-

method offers an automatic feature selection (EliteDataScience.com, 2016-2018) by selecting 

a subset of variables. LASSO specifies a limit for the sum of the absolute variables, whereby 

some variables shrink to zero. This identifies the variables, that are the closest to the target 

variable and the model can be interpreted better (James, G., Witten, D., Hastie, T., & 

Tibshirani, R, 2013). In the case of this study, it means that the variables, which were most 

likely to identify sex-specific activity, were used to build a model. As a result, a simple 

model is obtained, which doesn´t necessarily contain all of the coefficients which leads to an 

increase of prediction accuracy (Tibshirani, 1996). 

Linear Support Vector Machine (LSVM). SVM is a supervised classification 

technique with a two-class classifier and creates a model based on the input of training data 
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sets with these two classes. This method tries to separate the different classes by the 

maximum possible wide gap, which is called hyperplane (Rafi & Shahid Shaikh, 2013). 

LSVM means that a linear hyperplane can be used to separate the dataset into two classes. In 

the case of this study it means that male datasets were on the one side and female datasets on 

the other side of the hyperplane. For the unseen data, LSVM tries to predict to which one of 

the two classes (male or female), so to which side of the hyperplane a person´s dataset can be 

assigned to according to the previously learned connectomes with the respective sex of a 

person (Bradley & Mangasarian, 2000).   

Ridge Regression (Ridge). Ridge is a method to stabilize regression estimates in case 

of extreme collinearity (Frank & Friedman, 1993). It provides a solution by a penalized least 

squares criterion, meaning that feature shrinkage is offered by minimizing the sum of squared  

residuals, which again leads to smaller coefficients, but they are not forced to zero (Frank 

& Friedman, 1993; James, G., Witten, D., Hastie, T., & Tibshirani, R, 2013). This ML-

method reduces the dimensionality of the factor space to select the subset of predictors which 

fit the most (Hoerl & Kennard, 1970). 

Relevance Vector Machine (RVM). RVM is a statistical learning technique, which 

is based on Bayesian estimation for learning sparse regression models and classifiers (Saarela 

M., Elomaa T., Ruohonen K., 2010; Wei, L., Yang, Y., Nishikawa, R. M., & Jiang, Y., 2005). 

In contrast to SVM, RVM uses probabilistic measure to define the hyperplane. This ML-

algorithm yields a solution function based only on a small number of training examples, 

which are called relevance vectors (Rafi & Shahid Shaikh, 2013). 
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Results 

Datasets 

HBN. Considering all the four different ML-algorithms for the HBN-dataset, the 

classification accuracies ranged between 42.51% and 56.16% (all raw values for each dataset 

and ML-algorithm are provided in the appendix in table 3-6). Averaging about the algorithms 

and all the networks, the HBN-dataset reached a mean classification accuracy of 49.58% (SD 

= 3.35%). As can be also seen in figure 1, especially the ML-algorithms LASSO and Ridge 

mostly showed higher or lower accuracy values for the same networks. The highest mean 

classification accuracy of all ML-algorithms was achieved by the LSVM-algorithm for this 

dataset. 

eNKI. The highest classification accuracy that could be reached in the eNKI-dataset 

regarding all ML-algorithms was 71.69% and the lowest 49.98%. The mean classification 

accuracy of this dataset averaged over the four ML- algorithms was about 62.21% (SD = 

5.29%). Figure 2 demonstrates some quite similar peaks and low points in the classification 

accuracies for all the four ML-algorithms for the 12 networks, but Ridge achieved the highest 

mean classification accuracy of all 4 algorithms.  

HCP. In the HCP-dataset, the classification accuracies ranged between 49.73% and 

66.03% with regard to all the four ML-algorithms. The mean classification accuracy in this 

dataset was about 56.42% (SD = 4.74%) when averaging about all the 12 networks and ML-

algorithms. As can be seen in figure 3, the ML-algorithms LASSO, LSVM and Ridge 

produced for all networks classification accuracies that were higher than chance level and 

also showed the same pattern of higher or lower classification accuracies for the same 

networks, whereas RVM produced for all networks accuracies that ranged close around the 

50%-chance level. So, when averaging the four algorithms together, all networks reached a 
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mean classification accuracy that is higher than chance level. The ML-algorithm LSVM 

reached also in this dataset the highest mean classification accuracy of all algorithms. 

1000BRAINS. The classification accuracies in the 1000BRAINS-dataset ranged 

between 49.73% and 62.03% with regard to all four ML-algorithms. The mean classification 

accuracy for this dataset was about 53.43% (SD = 4.24%). Regarding the four ML-

algorithms, LSVM and RVM produced classification accuracies that ranged in most cases 

close around 50%, whereas Ridge and LASSO showed mostly similar accuracy values for the 

12 networks which is also displayed in figure 4. Out of the four ML-algorithms, Ridge 

produced on average the highest classification accuracy in this dataset. 

 

 

 

Figure 1. Classification accuracies for the 12 networks in the HBN-dataset for the four 

different ML-algorithms. All plots are created with Matlab 2017a (Mathworks, Natick, MA). 
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Figure 2. Displayed are the classification accuracies for the 12 networks in the eNKI-dataset 

for all of the four ML-algorithms. 

 

Figure 3. Classification accuracies for the 12 networks in the HCP-dataset for the four 

different ML-algorithms. 
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Figure 4. Displayed are the classification accuracies for the 12 networks in the 

1000BRAINS-dataset for the four different ML-algorithms. 

 

ML-algorithms 

LASSO. The classification accuracies with regard to all four datasets ranged between 

42.74% and 68.63% and the mean classification accuracy for LASSO was about 56.24% (SD 

= 6.95%) when averaging about all networks and datasets. LASSO produced on average the 

highest classification accuracy and the highest variance for the eNKI-dataset with 62.77% 

(SD = 5.56%), slightly lower accuracies for the HCP- (M = 58.56%, SD = 3.19%) and the 

1000BRAINS-dataset (M = 55.74%, SD = 3.94%) and the lowest accuracy was reached on 

average for the HBN-dataset (M = 47.89%, SD = 4.31%). Averaging about the four datasets, 

the network of autobiographical memory achieved the highest classification accuracy of all 

networks with 60.99% (SD = 5.90%) with this algorithms.  
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LSVM. Regarding all the four datasets, the highest classification accuracy produced 

by LSVM was about 66.23% and the minimum was about 48.14%. When averaging about all 

networks and datasets, LSVM produced a mean classification accuracy of 55.62% (SD = 

5.71%). This ML-method produced the highest classification accuracy and variance for the 

eNKI-dataset (M = 61.40%, SD = 4.64%) and also a relatively high accuracy for the HCP-

dataset (M = 59.23%, SD = 3.47%). The values of classification accuracy and variance were 

lower for the HBN- (M = 51.85%, SD = 2.21%) and the 1000BRAINS-dataset (M = 50.01%, 

SD = 0.01%). Also for this ML-algorithm, autobiographical memory (M = 58.79%, SD = 

7.39%) achieved the highest classification accuracy of all networks when averaging about the 

four datasets. 

Ridge. The highest classification produced by the ML-method Ridge was about 

71.69% when considering all four datasets, whereas the minimum was 42.51%. When 

averaging about the four datasets, the mean classification accuracy produced by Ridge was 

about 57.09% (SD = 6.81%). Also in this case, the highest classification accuracy and 

variance were in the eNKI-dataset (M = 64.52%, SD = 5.45%). For the HCP- (M = 57.95%, 

SD = 3.29%) and the 1000BRAINS-dataset (M = 57.02%, SD = 3.04%), Ridge produced 

nearly similar values for classification accuracy and variance. For the HBN-dataset, Ridge 

produced on average the lowest classification accuracy (M = 48.86%, SD = 3.45%). The 

network that reached on average the highest classification accuracy in this ML-method was 

semantic memory with 60.70% (SD = 8.73%).  

RVM. This ML-method produced classification accuracies in a range from 48.25% to 

66.21% with regard to all the datasets. When averaging about the datasets and the networks, 

RVM produced a mean classification accuracy of 52.68% (SD = 5.15%). RVM produced the 

highest classification accuracy for the eNKI-dataset (M = 60.14%, SD = 4.36%), as well as 

the other algorithms did. However, the classification accuracies for the HBN- (M = 49.69%, 
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SD = 0.92%), HCP- (M = 49.94%, SD = 0.15%) and 1000BRAINS-dataset (M = 50.95%, SD 

= 3.32%) ranged close around 50%. With regard to the networks, the highest classification 

accuracy that was produced on average for the autobiographical memory with 56.73% (SD = 

6.50%). 

Networks 

Under consideration of the four datasets and the four ML- algorithms, 

autobiographical and semantic memory were the networks which had the highest 

classification accuracies of all networks, further information are displayed in table 2. 

 

Table 2 

Classification accuracies of the 12 networks 

  M SD 

networks:     

AM 59.09% 6.61% 

CogAC 54.76% 3.83% 

emoSF 56.45% 6.58% 

Empathy 54.75% 6.21% 

ER 55.87% 7.43% 

MNS 51.23% 1.77% 

Motor 54.73% 4.32% 

Rew 56.25% 7.72% 

SM 57.20% 8.23% 

ToM 55.21% 6.69% 

VigAtt 54.04% 4.15% 

WM 55.32% 6.96% 

 

Note. Displayed are the mean classification accuracies for each of the 12 networks averaged 

over the four datasets and the four ML- algorithms. 
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Discussion 

The purpose of the present study was to investigate whether the RS functional 

connectivity in certain brain networks that are known for sex-specific processing strategies 

differs also according to sex. With an ML-approach we examined whether the RS functional 

connectivity within the brain networks carried enough information to accurately predict the 

sex of a person. For this purpose, the RS connectivity patterns in 12 different meta-

analytically defined networks in four datasets were extracted and analyzed with four different 

ML-algorithms. Many studies already provided evidence for sex-specific processing 

strategies in domains dealing with emotions (Sacher et al., 2013). Therefore, higher 

classification accuracies were expected especially in emotion-related networks. 

Higher classification accuracies and the highest variance were attained in the eNKI-

dataset, the HCP-dataset showed on average the second-highest accuracies. The classification 

accuracies were on average lower for the 1000BRAINS-dataset and the HBN-dataset 

provided the lowest mean accuracies of all datasets. With regard to the four different ML-

algorithms, LASSO and Ridge provided on average the highest classification accuracies and 

a higher variance. LSVM achieved similar high classification accuracies on average, whereas 

the accuracies for RVM were lower in contrast to the other three algorithms. With regard to 

the 12 networks, two of them could be highlighted in particular: autobiographical and 

semantic memory showed the highest classification accuracies on average within the four 

datasets and the four ML-algorithms. Altogether, the hypothesis of higher classification 

accuracies in emotion-related networks cannot be supported by the present results. Instead, 

the results were strongly dependent on the datasets and algorithms. Different possibilities, 

how these results could have been achieved, are discussed in the following: 



Sex classification from brain networks 

27 

 

Datasets. First, concerning the differing results in each of the datasets, an effect of 

age might be involved here. Although the analysis was controlled for the variable age, this 

effect might be still so strong that it influenced the results. In the eNKI- and HCP-dataset, the 

accuracies were higher than in the other datasets and these two datasets had in common, that 

their mean age was middle-aged in contrast to the others. Therefore, it might be hypothesized 

that the sex-specific information the basis of which the ML-algorithms create their model is 

most readily available in middle-aged participants. For the 1000BRAINS-dataset, the mean 

classification accuracy was slightly lower than for the other two mentioned before. The 

reason may be that this dataset contains less middle-aged and more elderly people because it 

was a study to investigate the variability of the human brain during aging (Caspers et al., 

2014). According to the fact, that the time of adolescence and also aging is associated with 

considerable changes in the brain (Blakemore & Choudhury, 2006; Tomasi & Volkow, 

2012),  it can be assumed that the functional connectivity patterns, that differentiate well 

between men and women, are developed  to a full extend only in middle-aged persons. 

Therefore, it seems reasonable that the classification accuracies in the 1000BRAINS-dataset 

are not as high as in the eNKI- and HCP-dataset. However, in the HBN-dataset, there were on 

the one hand only relatively young participants, who were all under 20 years old. Since the 

lowest mean classification accuracies were achieved in this dataset, it would agree with the 

assumption that the sex-specific information are not yet available at this age to the extent that 

it is possible to differentiate sufficiently between men and women. On the other hand, the 

HBN-dataset was the one with the lowest number of participants of all four datasets. So, 

another possible explanation for the lowest classification accuracies in this dataset might be 

that the ML-algorithms had not enough information to learn the relationship between sex-

specific features and the respective sex of a person, because of the lower number of subjects. 
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Consequently, the algorithms are not able to differentiate so well between men and women 

which have then led to the low accuracies in the HBN-dataset. 

ML-algorithms. Second, the four different ML-algorithms did not all show a uniform 

picture regarding the classification accuracies for the 12 networks. In all four datasets, 

LASSO and Ridge showed a similar pattern for the 12 networks in form of similarly high or 

low classification accuracies for the same networks. Both algorithms have in common that 

they shrink regression coefficients, so that they identify a subset of variables that fit the most 

to the target variable, which means that both algorithms build sparse models (James, G., 

Witten, D., Hastie, T., & Tibshirani, R, 2013). Since these two algorithms achieved on 

average the highest classification accuracies of all four ML-algorithms, it seem that the sparse 

models are quite suitable for this type of classification task. In contrast to Ridge and LASSO, 

the algorithms LSVM and RVM had in common that they separate the two classes of sex by 

the widest possible gap, the hyperplane (Rafi & Shahid Shaikh, 2013). However, it is not 

possible to state that these approaches are generally worse than the algorithms that built 

sparse models, because LSVM achieved on average the highest classification accuracies in 

two of the four datasets. Altogether, it can be said that the sparse algorithms seem quite 

suitable for the classification task, but they were not the best algorithms in all cases of the 

datasets. This empathizes the ‘no free lunch theorem’, so also these results display that not a 

single algorithms works best for all possible datasets as already stated by James, G., Witten, 

D., Hastie, T., & Tibshirani, R (2013).  

Networks. Third, the results according to the networks were different than 

hypothesized: There were no generally higher classification accuracies in the emotion-related 

networks and the motor-network. Based on the results, it can be concluded that the sex-

specific processing strategies, which were reported for the emotion-related domains, do not 

manifest themselves in general in the underlying RS functional connectivity or at least it 
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could not be demonstrated in this study. Instead, the results displayed the on average highest 

classification accuracies for the networks of autobiographical and semantic memory. For the 

autobiographical memory, some studies already found sex differences e.g. in neural 

recruitment (Piefke & Fink, 2005; Young et al., 2013). Therefore it was already hypothesized 

that the classification accuracies in this network should display a higher classification 

accuracy. However, it was expected that this would go along with higher classification 

accuracies also in other emotion-related networks. Instead, also the semantic memory 

displayed higher classification accuracies which was not hypothesized in the introduction. So, 

it seems that there is another component instead of the emotional component, which shows 

particularly sex-specific patterns that make it possible to differentiate well between males and 

females. Both cognitive domains, the autobiographical and semantic memory have in 

common that they belong to the declarative memory system (Renoult, Davidson, Palombo, 

Moscovitch, & Levine, 2012). Moreover, both memory system are acquired through personal 

experience as mentioned in the introduction: Whereas the cognitive domain of 

autobiographical memory is defined as the episodic memory for personal events in one´s own 

life (Spreng, R. N., Mar, R. A., & Kim, A. S., 2009; Young et al., 2013), semantic memory 

describes the knowledge about people, objects, culture etc., which was acquired through own 

experience (Binder et al., 2009). Since this component is present in both networks, it can be 

assumed that there are sex differences in the way that knowledge about these situations is 

stored in long-term memory. As already stated by Piefke and Fink (2005), sex-specific 

cognitive styles might exist regarding encoding, rehearsing and thinking about personal 

experiences, although the authors only referred to emotionally laden personal experiences. 

This assumption would also agree with the results of the study by Maitland, S. B., Herlitz, A., 

Nyberg, L., Bäckman, L., & Nilsson, L. G. (2004), who could provide evidence for sex-

dependent differences in the performance for episodic and the semantic memory as well as 
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for their subfactors e.g. recognition and recall. Taken together, the results provided evidence 

for sex-specific processing strategies in cognitive domains that belong to the declarative 

memory. Since the analysis of their underlying RS functional connectivity patterns resulted in 

the highest classification accuracies of all the networks that were investigated. 

Considering the accuracy values of the results in general, it also needs to be 

mentioned that the classification accuracies did not reach the high level of classification 

accuracies that was reached in the study by Zhang et al. (2018) who also used an ML-

approach for sex classification. In contrast to the present study, Zhang et al. (2018) examined 

the functional connectivity of the whole brain to classify sex and to identify the features of 

functional connectivity that are most predictive for sex. For this purpose, they investigated 

the RS fMRI data of 820 subjects of the HCP-dataset with a partial least squares regression 

modeling approach. They achieved classification accuracies of 80% and higher for sex 

classification based on RS-fMRI functional connectivity data. The present study, in turn, 

investigated the RS functional connectivity in predefined networks to predict sex, not the 

whole brain connectivity. Another difference to the study by Zhang et al. (2018) is that the 

present study employed different ML-algorithms and apart from the HCP-datasets also 

further datasets were used. Whereas the results of Zhang et al. (2018) could clearly point out 

the existence of sex differences in brain connectivity, the results of the present study could 

not show this in such a clear way because the classification accuracies ranged in most cases 

between 50% and 60%.  

One possible explanation that the classification accuracies in the present were not as 

high as in the study by Zhang et al. (2018) might be that the functional connectivity within 

predefined networks was examined instead of the whole brain connectivity. The functional 

connectivity of the whole brain contains more information than the connectivity within a 

certain network. So, the amount of information to classify sex was limited in the present 
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study. It might be that the information to predict the sex of a person are very complex and 

dispensed in the brain. For this reason, the networks may partially not contain sufficient 

information for sex classification, as these are more likely to be captured by the whole brain 

connectivity. This fact might have led to the overall relatively low classification accuracies. 

Still, the results provided indications which networks contain enough sex-specific 

information to classify sex with a better performance than chance level as pointed out before. 

Another possible reason for these results might be that the 12 networks are based on 

task-related studies, whereas the present study examined the underlying RS functional 

connectivity of several networks. On the one hand, it was already mentioned in the 

introduction that the ML-approach is different to the task-based studies on which the 

hypotheses were based. Therefore, it is quite possible that the classification approach leads to 

different results than were expected according to these task-based group comparisons 

reported in the introduction. On the other hand, it can be assumed that RS functional 

connectivity shows different patterns of connectivity at different neural areas than the 

activation that is shown in relation to a specific task. Consequently, sex-specific differences 

in RS functional connectivity that can lead to a good distinction between men and women 

may not necessarily show up in the defined neural networks. The same networks as were 

investigated in the present study were already examined by Pläschke et al. (2017) for the 

phenotypes of certain diseases and age. This study also achieved higher classification for 

these phenotypes than the present study for the phenotype of sex. As a consequence, it can be 

hypothesized that the functional connectivity in these certain networks is more likely to 

reflect phenotypes like age and disease. The functional connectivity that might be predictive 

for sex in turn might be too complex to be covered by a single network. This in turn, may 

have led to the present classification accuracies that ranged mostly between 50% and 60% in 

the present study.  
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Another possible explanation for the fact that the distinction between men and women 

was not as good to reach high classification accuracies might be a greater variance within one 

sex than between the sexes in several cognitive domains. If at least one of the sexes shows a 

greater variability in the RS-connectivity patterns of the networks it is hard to impossible to 

distinguish between males and females. If this was the case in the present study it might be a 

good explanation for why the classification accuracies were partly just above chance level 

and as a consequence the distinction between men and women did not work very well. This 

explanation would be in line with a hypothesis that was already stated in 1894 by Ellis 

(quoted from Feingold, 1992): Males were intellectually more variable than females and Ellis 

also concluded that this greater male variability was innate. This assumption has been 

examined several times and Feingold (1992) could prove this in his study only partially: 

Males showed in his study a greater variability in quantitative and spatial abilities but not in 

verbal abilities. However, in a cross-cultural quantitative review by Feingold (1994) it could 

be pointed out that the findings of Feingold (1992) were mostly dependent of the culture 

because the variance ratios were not consistent across different countries. The finding of 

greater male variability in mathematical and spatial abilities is well-established only for the 

US population, but this is represented in three (HBN-, eNKI- and HCP-dataset) of the four 

datasets that were used in this study.        

However, the studies mentioned before tested this hypothesis only for the three 

cognitive abilities that are related to language, mathematics and spatial abilities. In 

consideration of the results of the present study, it can also be assumed that different 

variability between the sexes also manifests itself in other cognitive domains, such as 

domains related to emotions or attention. If this greater variability in the cognitive domains 

also applies to the underlying RS-connectivity patterns of a cognitive domain, it can be 

another explanation for the results of the present study: If either the males or the females 
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showed a greater variability than the other sex, then the distinction between men and women 

do not work so well. As a consequence the classification accuracies are not so high, as it was 

the case in the present study. 

It might also be important to note that this study only examined the relationship 

between the RS-connectivity patterns of a person in specific networks and their respective 

sex and not their gender identity. The terms ‘sex’ and ‘gender’ are often used synonymously, 

but there are decisive differences: The ‘sex’ of a person describes the biological status of a 

person according to their anatomical characteristics as either ‘male’ or ‘female’, but the 

‘gender’ of a person is related to socially constructed roles and cultural representations 

(Diamond, 2002; Newman, 2002). ‘Gender roles’ in turn refer to socially characteristics and 

expectations what is associated with being male or female which means a certain behavior 

pattern according to a social script (Diamond, 2002; Newman, 2002). The gender roles are of 

course influenced by culture. In most cases, male roles are associated with strength or the 

financial provision of the family, while female roles are more concerned with taking care of 

the family. The terms of sex and gender identity do not necessarily have to agree with each 

other, which becomes apparent in phenomena such as intersexuality or transsexuality 

(Diamond, 2002). These terms describe on the one hand the possibility of ambiguous 

biological structures of the sex of a person. On the other hand it also describes people that do 

not identify themselves with their biological sex and the respective gender roles and rather 

feel like the opposite kind of sex.  

According to Newman (2002), the ‘brain sex’ of a person is the foundation of gender 

in social and cultural forms. In consideration of this statement, it can be supposed that the 

brain reflects more the ‘gender identity’ than the biologically based ‘sex’ of a person. 

Otherwise, it would not be possible that phenomena as transsexuality are possible to occur. 

For this reason, it can speculated that the RS connectivity patterns of a network show more 
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specialized patterns according to the gender identity of a person than for their biological sex. 

Therefore, it should be considered to take the gender identity as a further variable of interest 

into account, in addition to the biological sex. This has been already done for example in a 

study by Bourne and Maxwell (2010): Besides the biological sex also the psychological 

gender identity was examined and the authors could outline an interaction between these two 

variables. Taking both variables into account might also help for a better understanding of 

gender variation according to cultural variations and in the broader community. This can also 

help to improve social tolerance (Newman, 2002).  

Another approach by Joel et al. (2015) might yield a different perspective on the 

present results but also corresponds to the explanations discussed before: In their approach of 

the human brain mosaic, Joel et al. (2015) proposed that the brain is not dimorphic in the 

meaning of not having two distinct categories of ‘males’ and ‘females’. This approach does 

not deny the existence of sex differences on the group level; but in their investigations the 

authors could outline a great overlap between the distributions of men and women for gray 

and white matter as well as for connectivity measures (Joel & Fausto-Sterling, 2016). 

Furthermore, internal consistency in form of a brain having only ‘male’ or only ‘female’ 

features was lower than variability. These findings fit to studies that proposed that women as 

well as men may have ‘typical male’ and ‘typical female’ characteristics. Consequently, Joel 

et al. (2015) suggested a shift from the dimorphic view of the brain to a perspective that sees 

each human brain as a unique mosaic of features. Some of these features are more common in 

females in contrast to males, some features are more common in males and some features as 

pieces of the whole mosaic are common in males as well as in females. So the authors see the 

brain more multi-morphic than dimorphic. The authors also stated that the brain is highly 

variable in form of an heterogeneous mosaic of ‘male’ and ‘female’ characteristics that is 

always changing (Joel, 2011). These changes might be also modulated by social influences 
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and certain gender roles. This multi-morphic approach fits well to the explanatory approach 

discussed before, namely that the complexity of the phenotype sex is more likely to be 

represented in the whole connectivity of the brain. According to the authors, this ever-

changing variability is generated by a complex interaction of genetic and environmental 

factors as well as hormonal influences. Again, there can be drawn a connection to a 

previously discussed approach; namely that the variability within one sex may be higher than 

between the sexes, which in turn may have led to the lower accuracies. As reported by Joel et 

al. (2015), the sex of a person would be enough to predict whether a person have more 

‘typical females’ or more ‘typical males’, it would not be possible to predict the specific 

combination this person have in the ‘typical male’ and ‘typical female’ mosaics. In another 

article, Joel and Fausto-Sterling (2016) also stated that the sex differences which might be 

found in brain structure are not necessarily transferable to functional differences, so that brain 

function would  not be necessarily characterized by sexual dimorphism.  

On the one hand, this statement of Joel and Fausto-Sterling (2016) contrasts with our 

original assumption mentioned in the introduction that the functional connectivity in a 

network carries enough sex-specific information to accurately predict the sex of a person in a 

classification approach. However, since the results could not portray an overall accurate 

prediction of sex, this would show support for the statement of Joel and Fausto-Sterling 

(2016) that the sex differences in the cognitive domains of the networks investigated in this 

study are not transferable to brain function.  

On the other hand, the results showed that the four datasets and ML-algorithms 

produced differently high accuracies and for example the eNKI-dataset and the Ridge-

algorithm can produce accuracies that are definitely higher than chance level. For the one 

thing, this indicates that the classification accuracies are highly dependent on the datasets and 

the ML-algorithms. Then again, it can also be speculated that in some datasets is a higher 
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variability in the human brain mosaics than a clear distinction between persons carrying more 

‘typical male’ or ‘typical female’ features. This higher variability would result in the ML-

algorithms not being able to differentiate so well between men and women, which would 

explain the partially low classification accuracies near chance level in the HBN-dataset for 

example. According to Joel (2011), the variability is created by several factors like genetics 

or hormones. Since all subjects in the HBN-dataset were relatively young, meaning under 20 

years, it can be assumed that in this dataset the hormones during puberty might produce a 

great variability in their functional brain patterns, because it is already known that there are 

considerable changes in brain function during adolescence (Sturman & Moghaddam, 2011). 

This would make it more difficult to distinguish between the sexes, which is reflected again 

in the low classification accuracies of the HBN-dataset. So, this perspective would explain 

why this dataset produced the lowest accuracies of all datasets.  

This approach can also be used to explain the classification accuracies in the 

1000BRAINS-dataset, where the ML-algorithms LSVM and RVM produced accuracies near 

chance level: The subjects in this dataset were on average relatively old, especially in 

comparison to the remaining three datasets. According to Geerligs, Renken, Saliasi, Maurits, 

and Lorist (2014) there are changes within and between functional networks in the brain with 

increasing age and also structural changes. The age range Geerligs et al. (2014) investigated 

in their study is nearly similar to the age range of the 1000BRAINS-dataset. Therefore, it can 

be assumed that these age-related changes also lead to a larger variability in sex-specific 

features, which would make it again more difficult for the ML-algorithms to distinguish 

between the sexes. Consequently, the classification accuracies were partly not higher than 

chance level. Since the eNKI- and HCP-datasets could produce on average higher 

classification accuracies than the HBN- and 1000BRAINS-dataset, it can be assumed that in 

these datasets that contain mostly middle-aged persons, there are fewer factors like hormones 
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and environmental influences that can produce more variability in the sex-specific features in 

the brain. As a consequence, the distinction between men and women could have been 

achieved on a higher level, which would lead to the higher classification accuracies in the 

eNKI- and HCP-dataset in contrast to the HBN- and 1000BRAINS-dataset. 

This approach can also explain why the ML-algorithms LASSO and Ridge produced 

on average higher classification accuracies than LSVM and RVM: As mentioned before, 

LASSO and Ridge seem to be better suited for this classification approach with their sparse 

models, because they do not focus on the entire variability. In contrast, LSVM and RVM try 

to separate the two sexes with the hyperplane. As suggested by Joel et al. (2015), there is 

rather a large overlap of the distributions of men and women in several features and less the 

two distinct dimorphic classes ‘male’ and ‘female’. So, the working basis for the algorithms 

LSVM and RVM would be missing or is only slightly available according to the approach of 

the human brain mosaic. For this reason, it can explain how the on average lower 

classification accuracies of these algorithms might have come about. 

Nevertheless, the results provided indications for sex-specific processing strategies in 

the RS functional connectivity patterns of the networks of autobiographical and semantic 

memory. Because these networks achieved the overall highest classification accuracies of all 

investigated networks. Also this part of the results can be linked to the approach of the human 

brain mosaic by Joel et al. (2015): It might be assumed that these two networks represent 

these pieces of the mosaic that show more sex-specific features than the other networks. 

Consequently, in these networks the two sexes could be easier to distinct which then leads to 

the higher classification accuracies that are displayed in the results. 

Joel and Fausto-Sterling (2016) also posed the question whether sex should still be 

taken up as a variable of interest in future studies if the brain cannot be seen in the dimorphic 
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classes and more as a specific composition of ‘typical male’ and ‘typical female’ features 

according to the approach of the human brain mosaic.  First, the authors said by themselves 

that the variable sex might correlate with other variables and therefore it should still be taken 

up to clarify variance. Second, the results of the present showed that the distinction and 

classification between men and women worked differently well: We saw that the choice of a 

certain dataset or ML-algorithm might influence the classification accuracies. Additionally, 

the results also showed that in certain memory networks men and women may be better 

classified than for example in the hypothesized emotion-related networks.  For this reason, it 

can be suggested that sex should still be used in future studies as a variable of interest. This 

might become also relevant to improve the understanding how sex may influence the brain 

also in clinical aspects, since sex differences may also play a role in the occurrence of certain 

diseases as stated for example by Bijl, Graaf, Ravelli, Smit, and Vollebergh (2002). As 

suggested before, it should generally be considered to take sex and also the gender identity as 

variables of interest into account in future studies to improve the understanding of the 

influence of these variables.  

To sum it up, the results of the present study did not support the hypotheses of higher 

classification accuracies in especially emotion-related networks. Instead, the classification 

accuracies were generally not so high as in another study that also employed a ML-approach 

for sex classification. A possible explanation might be that this study investigated whole-

brain connectivity whereas the present study examined the connectivity within specific 

networks. Another possible reason can be that the RS-functional connectivity patterns which 

were analyzed in this study are not so easily to compare to the task-based group comparisons 

on which the hypotheses were built on. Another explanation might be that this ML-

classification approach was another approach than the group comparisons that were 

conducted in the past. Therefore it is not inconceivable that different results were received 
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with a different approach. Moreover, a higher variability within than between the sexes could 

have led to a worse distinction and consequently to lower classification accuracies. This 

explanation goes hand in hand with the idea of the human brain mosaic that suggests a greater 

variability in form of a greater overlap between 'male' and 'female' features than a clear 

distinction between the two classes. In line with this approach, we also considered the idea, 

that gender identity might be more represented in the brain than the biological sex of a 

person. It is possible to receive other results when considering the gender identity as variable 

of interest which can be a suggestion for future studies. Still, the results provided indications 

for sex-specific processing strategies in the networks of autobiographical and semantic 

memory. This suggests that their common component of personal experience is particularly 

processed in sex-specific ways that leads to a good distinction between men and women. 

Overall, it can be generally outlined that although the present study examined in all 

cases RS-functional connectivity from fMRI-studies, the results showed a strong dependency 

of the respective datasets and ML-algorithms. This dependency should be taken into account 

for future studies, because the present study showed how different the results may be 

according to possible age or variability effects.  
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Appendix 

Table 3 

Classification accuracies of the HBN-dataset 

  machine learning method 

  LASSO LSVM Ridge RVM 

networks: 

    AM 51.11% 52.95% 50.08% 50.86% 

CogAC 54.87% 56.16% 49.81% 50.03% 

emoSF 51.44% 48.14% 52.41% 51.26% 

Empathy 43.35% 51.28% 45.56% 50.78% 

ER 44.37% 52.43% 46.26% 48.25% 

MNS 50.24% 50.72% 53.08% 48.41% 

Motor 51.74% 52.38% 54.48% 49.52% 

Rew 42.75% 52.74% 48.23% 48.65% 

SM 42.97% 51.24% 46.62% 49.50% 

ToM 46.80% 54.67% 42.51% 49.37% 

VigAtt 52.35% 48.15% 51.40% 49.61% 

WM 42.74% 51.36% 45.89% 50.09% 

 

Note. Displayed are the individual result values of the analyses for each network in the HBN-

dataset with regard to the four different ML-algorithms. 
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Table 4  

Classification accuracies of the eNKI-dataset 

  machine learning method 

  LASSO LSVM Ridge RVM 

networks: 

    AM 66.28% 66.19% 62.28% 64.35% 

CogAC 58.02% 58.32% 63.63% 56.34% 

emoSF 67.95% 65.87% 69.30% 54.58% 

Empathy 64.89% 61.81% 55.64% 65.07% 

ER 65.35% 65.46% 67.93% 66.21% 

MNS 50.00% 49.98% 54.05% 50.95% 

Motor 57.82% 59.51% 61.76% 61.57% 

Rew 68.12% 66.23% 71.69% 60.56% 

SM 68.63% 62.68% 70.33% 57.50% 

ToM 64.65% 63.73% 66.56% 63.16% 

VigAtt 56.56% 56.46% 61.78% 60.07% 

WM 65.02% 60.57% 69.33% 61.29% 

 

Note. Displayed are the individual result values of the analyses for each network in the eNKI-

dataset with regard to the four different ML-algorithms. 
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Table 5 

Classification accuracies of the HCP-dataset 

  machine-learning method 

  LASSO LSVM Ridge RVM 

networks: 

    AM 64.52% 66.03% 65.07% 49.74% 

CogAC 53.78% 55.88% 55.27% 49.98% 

emoSF 59.10% 60.26% 55.30% 49.73% 

Empathy 58.61% 58.59% 55.69% 50.08% 

ER 60.36% 59.61% 58.82% 50.10% 

MNS 52.92% 53.60% 54.69% 49.99% 

Motor 58.15% 58.65% 57.34% 49.98% 

Rew 58.30% 59.30% 58.15% 50.07% 

SM 63.62% 65.07% 64.36% 50.08% 

ToM 57.48% 55.50% 57.40% 49.73% 

VigAtt 57.35% 57.57% 57.89% 49.73% 

WM 58.56% 60.74% 55.42% 50.09% 

 

Note. Displayed are the individual result values of the analyses for each network in the HCP-

dataset with regard to the four different ML-algorithms.  
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Table 6 

Classification accuracies of the 1000BRAINS-dataset 

  machine-learning method 

  LASSO LSVM Ridge RVM 

networks: 

    AM 62.03% 50.00% 61.94% 61.98% 

CogAC 57.18% 50.01% 56.85% 49.97% 

emoSF 58.21% 50.00% 59.74% 49.98% 

Empathy 57.98% 50.01% 56.98% 49.73% 

ER 53.15% 50.01% 55.73% 49.90% 

MNS 49.93% 50.01% 51.17% 50.01% 

Motor 49.93% 50.01% 52.83% 50.00% 

Rew 56.99% 50.00% 58.43% 49.85% 

SM 61.04% 50.00% 61.50% 50.00% 

ToM 54.98% 50.02% 56.75% 50.03% 

VigAtt 50.51% 50.01% 55.13% 50.02% 

WM 56.95% 50.00% 57.23% 49.88% 

 

Note. Displayed are the individual result values of the analyses for each network in the 

1000BRAINS-dataset with regard to the four ML-algorithms. 

 




